
http://www.egovframe.go.kr/wiki/doku.php?id=egovframework:rte2:brte:batch_core:job_launcher

JobLauncher

Outline

JobLauncher is used to execute the batches using jobs and job parameters and returning JobExecutions.

Description

In JobLauncher you can find out the method Run is defined to execute the batches using jobs and job parametes and

returning JobExecutions.

public interface JobLauncher {

 public JobExecution run(Job job, JobParameters jobParameters) throws

JobExecutionAlreadyRunningException,

 JobRestartException, JobInstanceAlreadyCompleteException,

JobParametersInvalidException;

}

In the JobLauncher interface, SimpleJobLauncher is provided to implement the class using JobName and

JobParameter to acquire JobExecution information in JobRepository.

Refer to the following for how jobLauncher can be configured. Note that configuration of JobRepository is required to

acquire JobExecution information:

<bean id="jobLauncher" class="org.springframework.batch.core.launch.support.SimpleJobLauncher">

 <property name="jobRepository" ref="jobRepository" />

</bean>

Both synchronous and asynchronous executions of job are available for JobLauncher, by wisely configuring

taskExecutor. The default configuration for the class syncTaskExecutor synchronously actuates the following

executions. When the client is requested to process batch task, JobLauncher acquires a single JobExecution transferred

to the concerned method for execution of the task and returns JobExecution to hte eventual client:

 Synchronous

http://www.egovframe.go.kr/wiki/doku.php?id=egovframework:rte2:brte:batch_core:job_launcher
http://www.egovframe.go.kr/wiki/doku.php?id=egovframework:rte2:brte:batch_core:job_repository

Executing the foregoing workflow in the scheduler is a cakewalk, until you encounter HTTP request that involves

latency. Instead of wasting your precious time until HTTP response is delivered, you are advised to work

asynchronously to have SimpleJobLauncher return JobExecution to the eventual Client, as follows:

 Asynchronous

You can simply work the JobLauncher configuration for asynchronous configuration in the class

SimpleAsyncTaskExecutor, as follows:

<bean id="jobLauncher" class="org.springframework.batch.core.launch.support.SimpleJobLauncher">

 <property name="jobRepository" ref="jobRepository" />

 <property name="taskExecutor">

http://www.egovframe.go.kr/wiki/lib/exe/detail.php?id=egovframework:rte2:brte:batch_core:job_launcher&media=egovframework:rte2:brte:batch_core:joblauncher_sync.png
http://www.egovframe.go.kr/wiki/lib/exe/detail.php?id=egovframework:rte2:brte:batch_core:job_launcher&media=egovframework:rte2:brte:batch_core:joblauncher_async.png

 <bean class="org.springframework.core.task.SimpleAsyncTaskExecutor" />

 </property>

</bean>

Note that Spring’s TaskExecutor interface is intended to control batch tasks executed on an asynchronous

References

 Synchronous/Asynchronous Examples

 http://static.springsource.org/spring-batch/reference/html/configureJob.html#configuringJobLauncher

http://www.egovframe.go.kr/wiki/doku.php?id=egovframework:rte2:brte:batch_example:sync_async
http://static.springsource.org/spring-batch/reference/html/configureJob.html#configuringJobLauncher

