
Basics

Summary

Description

The Bean in the Spring Framework composes the application and refers to the

instance that is managed by IoC container. In short, the Bean is instantiated,

assembled and managed by the IoC container. The Bean and dependency between

the Beans is decided by the configuration metadata that the container uses.

The container

The org.springframework.beans.factory.BeanFactory is the key interface of the Spring

IoC Container. It creates the instance and connects the dependency between

instances.

Configuration metadata

As seen above, the Spring IoC container requires configuration metadata. This

configuration metadata provides necessary information for the Spring IoC container to

“ instantiate, configure and assemble the objects.” This configuration metadata is

typically supplied in a simple and intuitive XML format. You can find details of another
form of metadata that the Spring container can consume in the section entitled

“Annotation-based configuration”

Find below an example of the basic structure of XML-based configuration metadata.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean id="..." class="...">

 <!-- collaborators and configuration for this bean go here -->

 </bean>

 <bean id="..." class="...">

 <!-- collaborators and configuration for this bean go here -->

 </bean>

 <!-- more bean definitions go here -->

</beans>

<beans> element is the element that displays the configuration metadata of the

Spring IoC container. Moreover, each <bean> element indicates the definition of

objects that the Spring IoC container creates and manages.

The XML-based configuration metadata can be composed of many files. In this case,

other files can be imported from one configuration file to read overall configuration

metadata. Use the <import> element to import.

<beans>

 <import resource="services.xml"/>

 <import resource="resources/messageSource.xml"/>

 <import resource="/resources/themeSource.xml"/>

 <bean id="bean1" class="..."/>

 <bean id="bean2" class="..."/>

</beans>

The resource attribute of <import> tag indicates the location of XML configuration file.

Instantiating a container

Next is an example of instantiating the Container.

ApplicationContext context = new ClassPathXmlApplicationContext(

 new String[] {"services.xml", "daos.xml"});

// an Application is also a BeanFactory (via inheritance)

BeanFactory factory = context;

ClassPathXmlApplicationContext of the example above is a type of ApplicationContext

and the ApplicationContext interface inherits the BeanFactory interface.

How to Use the Container

When the container is objectification, the bean can be imported using the get Bean

(String) method.

The beans

Spring IoC container manages many beans. The container uses the configuration

metadata to create beans. The definition of beans used in the container conveys

below data.

• A package-qualified class name: typically this is the actual implementation class

of the bean being defined.

• Bean behavioral configuration elements, which state how the bean should
behave in the container (scope, lifecycle callbacks, and so forth).

• References to other beans which are needed for the bean to do its work; these

references are also called collaborators or dependencies.

• Other configuration settings to set in the newly created object. An example
would be the number of connections to use in a bean that manages a

connection pool, or the size limit of the pool.

The concepts listed above directly translate to a set of properties that each bean

definition consists of. Some of these properties are listed below, along with a link to
further documentation about each of them.

Feature Explained in…

class Instantiation beans

name Naming beans

scope Bean scope

constructor arguments Injecting dependencies

properties Injecting dependencies

autowiring mode Autowiring collaborators

dependency checking mode Checking for dependencies)

lazy-initialization mode Lazily-instantiated beans

initialization method Initialization callbacks

destruction method Destruction callbacks

Naming beans

All beans should have more than one ids. Only one id is permitted within the

container. A bean will almost always have only one id, but if a bean has more than

one id, the extra ones can essentially be considered aliases.

The convention (at least amongst the Spring development team) is to use the

standard Java convention for instance field names when naming beans. That is, bean
names start with a lowercase letter, and are camel-cased from then on. Examples of

such names would be (without quotes) 'accountManager', 'accountService', 'userDao',
'loginController', and so forth.

Aliasing beans

Additional names can be given to the pre-defined beans using <alias> element.

<alias name="fromName" alias="toName"/>

The name attribute is the name of the bean and the alias attribute is the new name to

be given.

Instantiating beans

All definition of beans requires Java Class for Instantiation.

The class property specifies the class of the bean to be constructed in the common

case where the container itself directly creates the bean by calling its constructor

reflectively (somewhat equivalent to Java code using the 'new' operator). In the less

common case where the container invokes a static, factory method on a class to

create the bean, the class property specifies the actual class containing the static

factory method that is to be invoked to create the object

The instantiation using the creator is most common and it is used as following.

<bean id="exampleBean" class="example.ExampleBean"/>

<bean name="anotherExample" class="examples.ExampleBeanTwo"/>

Reference

• Spring Framework - Reference Document / 3.2. Basics - containers and beans

